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Abstract: 

In the recent past, the development of statistical methods 

for high-dimensional problems has greatly advanced 

leading to methods for model selection such as the lasso. 

However, the question of error control in high-

dimensional settings has proven to be difficult. Recently, 

an approach called stability selection has been proposed 

to tackle the problem. It combines a method for model 

selection and sub sampling to deliver a form of error 

control. In this paper, some variants of stability selection 

are introduced. It was tested if error control would 

actually hold up. Furthermore, some conditions were 

isolated where using these variants might have beneficial 

effects. 
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1. Introduction 

This work is about the statistical problem of model 

selection in linear models.  

Given some data ),...,1(...,,,( )1( niXXY P

iii = , one 

assumes that there is a linear relationship in the following 

fashion 

( )niXY i

j

i

p

j

ji ,...1
1

=++= 
=

                                 

(1) 

where ( )nii ,,...1, =  are random and   i.i.d with mean 

zero. This can be written more compactly as 

 ++= XY 1                                                            

   (2)  

where Y,   and 1 are n-dimensional vectors,   is a p-

dimensional vector and X is an pn -matrix with the  

first column set to one. Additionally, we assume that 

many j  are zero (where j  refers to the jth entry in 

the vector  ). Our goal is to isolate those variables for 

which 0j . One obvious way to do this is to look at 

each predictor variable separately. Let the jth column of X 

be denoted by X (j). Then, for each X (j), we would need to 

test the model for significance taking into account that 

this is a multiple testing problem. 

( )  ++= j

jXY 1                                                       

(3) 

However, this approach will not take the correlations 

between the predictors ),...,1(,)( pjX j = into 

consideration. An alternative way is to find an estimate of 

the whole vector of coefficients   that leads to a good fit 

to the data while at the same time ensuring that our 

estimated vector ̂  is sparse in the sense that few entries 

in   are non zero. This should yield a model with high 

predictive power that is also interpretable due to the low 

numbers of coefficients in the model. Since we also 

assumed that most coefficients j  are truly zero, we can 

even hope to uncover the true model. One generic way to 

accomplish those goals is to find minimize of a function 

consisting of the negative log-likelihood and an additional 

term penalizing the size of the model. This approach is 

also called regularization. There are many methods that fit 

into this general framework and in Section 2, we will 

present one in detail, namely the lasso. It was proposed by 

Tibshirani (1996) and has become very popular due to its 

good theoretical properties as well as computational 

feasibility (see for example Buhlmann and van de Geer 

(2011)). However, there are some difficulties associated 

with this approach. The first concerns the trade-off 

between goodness of fit and sparsity of the solution. It is 

difficult to decide how much one should penalize model 

size. Secondly, it is not obvious how to establish some 

form of error control. Meinshausen and Buhlmann (2010) 

addressed these problems with an ensemble approach 

called stability selection. This method consists of 

repeatedly drawing subsamples from the data, then 

applying a selection method to each subsample and 

looking for consensus in the collection of proposed 

solutions. Stability selection is not a new variable 

selection technique (see for example Sauerbrei and 

Schumacher (1992)). However, Meinshausen and 

Buhlmann used it for establishing error control and to 

resolve the issue of deciding how much regularization is 

necessary. Section 3 describes this approach in more 

detail and presents some variants for which we can 

establish a very similar form of error control. Section 4 

contains simulation results comparing the various 

approaches, and Section 5 a final discussion. 

 

2. The Lasso 

In this section, we first present the idea behind 

regularization and its connection to model selection. We 

then give some reasons why we can hope to accomplish 
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both with the lasso. We go on to present some asymptotic 

results for this estimator and talk about how to decide 

how much regularization is necessary. This exposition 

follows Buhlmann and van de Geer (2011), where also 

many of the following results are treated in much greater 

detail. 

 

2.1. Regularization 

Consider again the linear model 

 ++= XY 1                                                        (4) 

where  ,,Y and 1 are n-dimensional vectors, X is an 

pn -matrix and the entries of ),...,1(,, nii = , are 

random, i.i.d and have expectation zero. For simplicity, 

we assume that the intercept   is zero and that all 

covariates ),...,( )()1( pXX are centered and on the same 

scale. This is approximately achieved by subtracting the 

empirical means pjXY j ,...,1,, )( = , and additionally 

scaling the covariates with the estimate of the standard 

deviation  =
−=

n

i

jj

ij nXX
1

2)()( /)(̂ . The goal 

is now to estimate the coefficients ),...,1(, pjj = . 

The classical method to solve this problem is to minimize 

the residual sum of squares  

( )2

2
minargˆ   XY −=                                        (5) 

This is called the ordinary least squares (OLS) estimator. 

If XX T
 is not singular, this minimum is unique and can 

be calculated as follows  

( ) YXXX TT 1ˆ −
=                                                     (6) 

One case where this cannot hold is when p > n. But also, 

when XX T
 is almost singular, say because the 

predictors are highly correlated, the estimate becomes 

unreliable, because for the OLS-estimate we have 

( ) ( ) 12ˆ −
= XXCov T                                               (7) 

which increases as ( XX T
) gets closer to singularity. 

We can decompose the mean squared error into variance 

and the square of the bias of the estimator. Although the 

OLS estimate is unbiased, its variance is large if XX T
 

is close to singularity as we have seen. It follows that our 

mean squared error will be large as well. One way to 

potentially improve the quality of the OLS-estimator is to 

modify it so that the new estimator has a bias but has 

dramatically reduced variance. This is what regularization 

does. It typically takes the form 

( )( )  pennXY +−= /minargˆ 2

2
              (8) 

where )(pen measures model size and 0 is a tuning 

parameter. The most natural choice for complexity 

penalization is 0l -penalization. Here, 

( )
0

2

2
/minargˆ   +−= nXY                    (9) 

where 

 
=

=
p

i

j

1
0

01                                                   (10) 

0l -penalization favors models with few coefficients 

different from zero. This is a desirable property because 

of better interpretability. Also, it is often reasonable to 

assume that most predictors have zero coefficients. For 

this approach, there are choices for the size of  which 

have a theoretical justification, for example the Akaike 

Information Criterion (AIC), or Bayes Information 

Criterion (BIC). 

However, for large p, the optimization problem becomes 

infeasible since the penalty function is neither convex nor 

continuous. One method to overcome this is forward 

selection. Here, the model size is increased one variable at 

the time. One selects always the variable which lowers the 

residual sum of squares of the resulting model the most. 

Note that the minimum of the residual sum of squares 

does not increase when an additional variable is added, 

since the parameter space over which we optimize 

becomes larger. However, this procedure turns out to be 

instable, because it corresponds to a very greedy search in 

the model space. Other related stepwise procedures were 

proposed, but they all tend to show this instable behavior. 

2.2. Lasso and Variable Selection 

A popular alternative is the lasso estimator which stands 

for Least Absolute Shrinkage and Selection Operator. 

This estimator is defined as 

( )
1

2

2
/minargˆ   +−= nXY                  (11) 

Because the objective function is convex, computation of 

this estimator is feasible. Also, the estimator has the 

property that it sets many coefficients to zero, i.e. 

0)(ˆ = j for some j. This makes this estimator a 

candidate for a variable selection procedure. Additionally, 

one can establish via lagrangian duality that problem 

2.0.2.1 is equivalent to 

( ) ( )nXYR
R

prim /ˆ 2

2

:

minarg
1




−=


                  (12) 

and that there is a one-to-one correspondence between R 

and   depending on the data. Hence, one can think of the 

Lasso estimate as an OLS solution constrained to lie in 

the set  R
1

:  One can derive an intuitive 

understanding why the lasso will set some coefficients to 

zero and why this doesn't occur in ridge regression, 

( ) ( )nXYR
R

prim /ˆ 2

2

:

minarg
2




−=


            (13) 
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The situation is schematically depicted in Figure 1. The 

contour lines of  -values leading to equal values of 

residual sum of squares in the picture reach the 1l -ball in 

a corner where- 2l . This is not the case for the 01 =  

ball. 

 
 

Fig. 1. Contour lines of residual sum of squares. 

Restriction to the 1l -ball for the lasso solution and the 

2l -ball for the ridge solution is shown on the left and 

right respectively. 

 

Therefore, it is possible to use the lasso as a variable 

screening method. Just like forward selection regression, 

lasso favors sparse models where many coefficients are 

set to zero. One can show that for each  , lasso selects at 

most min (n, p) covariates (Efron, Hastie, Johnstone, and 

Tibshirani (2004)). Additionally, the number of different 

sub models that are selected for various values of   is 

typically O (min (n, p)) (Rosset and Zhu (2007)). So, the 

Lasso can be used to derive sparse models. Obviously, 

one wants to know if the model proposed has good 

properties such as good prediction and if it can detect the 

correct model assuming that the true underlying model is 

sparse. For a good estimator of our regression function, 

we want the empirical squared prediction error 

( )( ) nX nnnn /ˆ
2

2

0 −                                          (14) 

to be small. Here, 
0  denotes the true coefficient vector. 

This is also the quantity of interest when we want to 

predict a new response. Another question of interest is if 

the lasso is able to estimate 
0  well. Also, since we are 

interested in variable screening we want to know if the 

lasso can uncover the set  0: 0

0 = jjS   

 

2.3. Consistency of the Lasso 

To derive the favorable properties of the OLS estimator, 

one resorts to asymptotic (see for example Sen and 

Srivastava (1990)). Assuming that the number of 

observations tends to infinity and p is fixed, one can, 

under some conditions on the design XX T
, show that 

( ) 22
2

2

ˆ
p

dX  ⎯→⎯−                                        (15) 

and 

( ) pXE d 2
2

2

ˆ  ⎯→⎯





 −                                  (16) 

Via Chebyshev's inequality, we get that 

( ) ( )1ˆ
2

2
OpX =−                                                 (17) 

This result is derived under the assumption that n goes to 

infinity while p is fixed. However, the situations where 

we want to use the lasso are not modeled well by this 

assumption since we want to allow the case np  . One 

way to capture this situation is by triangular arrays of 

observations 

( ) ....,2,1;,...,1,,

0

.

1

.,. ==+=
=

nniXY injn

P

j

j

inin

n

             (18) 

Here, npn   is allowed. Note that we also allow the 

true coefficient vector
0

n   to depend on n. One can show 

consistency of the lasso estimator if 
1

0

n  doesn't grow 

too fast, i.e. for a suitable choice of , it holds that  

( )( ) ( )( )npOpnX nnnnnn /log/ˆ
1

0
2

2

0  =−              (19) 

where the asymptotic is with respect to 2.0.3.4.  

Therefore, if ( )( )npnn /log
1

0  converges to zero, 

consistency holds. Note that if we assume the classical 

setting with p fixed as →n , this rate is slower than 

what equation 2.0.3.3 suggests for the OLS solution. With 

an additional assumption on the design X called 

compatibility (or restricted Eigenvalue) condition, one 

can prove the following faster error rate 

( ) ( )













=−

2

0
2

2

log
/ˆ




n

pS
OpnX                       (20) 

where 
2  is the so-called compatibility constant, which 

depends on the design X as well as the active set S0. If 

this constant is bounded from below for all n, we see that 

the squared prediction error of the lasso solution has the 

same rate of convergence as the OLS-solution up to a 

factor log (p). Therefore, the rate of convergence is 

almost as fast as if one knew beforehand which 

coefficients truly is nonzero and applied OLS. This is 

called an oracle property. Under exactly the same 

conditions, it can be shown that 
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( )
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












=−

2

0

1

0
log

ˆ




n

pS
Op                      (21) 

Therefore, if   is bounded from below 

( ) 0)/()log( 2

0 →npS   

we have 

( ) 0ˆ
1

0 ⎯→⎯− p                                               (22) 

(Also, a similar result can be proven for the 2l -norm 

under more stringent compatibility conditions.) If we 

predefine, for some cutoff C > 0, the set 

 CjCS j

relevant = 0

0 :)(   result 2.0.3.8 ensures 

that, asymptotically, we will find all covariates that are 

in )(0 CS relevant
, i.e. 

( )    ( )→⎯→⎯ nCSSP relevant ,1ˆ
0                        (23) 

since 

( )  ( )  0ˆ)(ˆ
1

0

0 →− CPCSSp relevant                   (24) 

This property is called the screening property since it 

ensures that relevant variables are retained. Because of 

this and the fact that the lasso will at most select min (n; 

p) variables if np  , we can use the lasso to get rid of 

most noise covariates while retaining the relevant 

variables with high probability. 

 

2.4. Choice of the Tuning Parameter 

Typically, the tuning parameter is chosen via cross 

validation. However, cross validation estimates the 

prediction error and tries to find an optimal amount of 

regularization for prediction. But the optimal amount of 

regularization for prediction and the optimal amount for 

uncovering the set of active variables S0 do not need to 

coincide. Choosing the tuning parameter via cross 

validation often leads to inclusion of too many covariates. 

As an illustration, Figure 2 shows a so-called 

regularization path and the choice made via 10-fold cross 

validation.  

1

ˆOLS

R
t


=                                                                 (25) 

where 
1

ˆ OLS  refers to the smallest possible 1l -norm 

of an OLS solution. This parameterization has the 

advantage that roughly represents the fraction of 

coefficients that are in the model compared to the full 

model. Note how the 10-fold cross validated solution 

finds almost all truly active variables but also a large 

number of inactive variables. 

 

 

Fig. 2. Plot of estimates p ˆ,...,ˆ,ˆ 21 versus 

11

ˆ/ˆ OLSt =  for the lasso.  

Solid blue lines correspond to active covariates, dashed 

black lines to inactive covariates. Data was generated 

according to design b) in section 4.0.3 with n = 100 and p 

= 200. The number of active variables was 5 and the 

signal-to-noise ratio 2. 

 

This is not so surprising since the screening property 

ensures that, asymptotically, our relevant variables will be 

included in the solution, but does not say if irrelevant 

ones will be excluded for sure. This is referred to as 

consistent variable selection which we will discuss next. 

 

2.5. Consistent Variable Selection 

We have seen that under so-called compatibility 

conditions 0ˆ0 ⎯→⎯− p , but this does not imply 

that ( )  ( )→→= nSSP 1ˆ
0                          (26) 

It can be shown that, for this to hold, the so called 

irrepresentable is sufficient if all active coefficients are 

bounded away from zero. Designate 0SX  as the 

restriction of the design matrix X to the columns 

corresponding to S0. Then we say that the irrepresentable 

condition holds if for every 
CSj 0  

( ) ( )  
− jT

SS

T

SS XXXX 0

1

000                              (27) 

for some 10  , where 0S  is the restriction of the 

vector 
T

psignsign ))(...,),(( 00

1  to the active 

coefficients.  Also, for consistent variable selection to be 

at all possible, it is necessary that for every 
CSj 0  

( ) ( ) 10

1

000 
− jT

SS

T

SS XXXX                               (28) 

One can show that the irrepresentable condition is 

stronger than the compatibility condition. 
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3. Stability Selection 

As we have seen, even though the lasso is powerful tools 

for model selection in cases were np   , there are 

some problems. One issue is how to select the correct 

amount of regularization to achieve a certain goal such as 

variable selection. We have seen that cross validation 

often leads to the inclusion of too many variables. 

However, it is often desirable to control the number of 

false positives, even at the expense of missing some 

active variables, for example, if costly and time-

consuming follow-up experiments is performed to 

validate the findings. It is not clear how to achieve this 

simply by choosing the correct regularization parameter. 

One approach is stability selection proposed by 

Meinshausen and Buhlmann (2010). As mentioned 

before, it is an ensemble approach. It relies on repeatedly 

drawing subsamples from the data, applying a variable 

selection method, such as the lasso, and look for 

consensus in the ensemble of solutions. Let the situation 

be as stated in the introduction. We are trying to estimate 

the set of coefficients that are active in the linear model 

 += 0XY                                                              (29) 

i.e. find set S where   0: 0 = jjS  . We additionally 

assume that the data 

( ) ( )nn yxyxZ ,,...,, 11=                                            (30) 

are independent and identically distributed. In particular, 

we do not think of our design as fixed. Assume that I is 

some uniform random subsample of size  2/n of the 

index set  n,...,1 and use this index set to subsample 

from the data yielding Z (I). For this subset of the data 

and a given regularization parameter  , we can 

apply the lasso procedure yielding 

 pkIk ,...,1,:)(ˆ = 
  

and 

 pkIkIS k ,...,1,0)(ˆ:)(ˆ ==   . 

We can now define the conditional selection probability 

of covariate k as  

( ) ZISkP 


ˆˆ =                                              (31) 

This quantity can be estimated with arbitrary accuracy by 

repeated sub sampling and application of the above 

procedure. Analogously to the regularization paths 

explained above, we are in a position to plot stability 

paths where the quantities 

̂ are plotted over the whole 

set of potential regularization parameters. Figure 3 

displays such a stability path for the same data as Figure 

2. As we see, almost all variables that display high 

stability are truly active. Furthermore, the stability for 

very stable variables changes comparatively little over a 

large portion of the stability path. This stands in stark 

contrast to the lasso trace, where the solution varies a lot 

over the whole regularization path. 

 
Fig. 3. Example of a lasso stability path: Plot of estimates 

̂ versus 
11

ˆ/ˆ OLSt =  on the same data as in 

Figure 2.  

Solid blue lines correspond to active covariates, dashed 

black lines to inactive covariates. 100 subsamples were 

drawn. 

 

For our estimate of S, we choose those covariates whose 

selection probability is above a certain predefined 

threshold thr  for some  , i.e.  

 thrk

stable kS 


=


,ˆmax:ˆ                                (32) 

The new tuning parameters of the method are the 

regularization region   and the threshold thr , where 

10  thr . 

 

3.1. Error Control 

One advantage of the described method is that it allows 

for a certain form of error control under some additional 

conditions. For a given regularization region, one can 

derive a bound on the expected number of false positives 

depending on the cut-off thr . In order to define the 

additional conditions, we introduce some notation. We set 


 SS ˆˆ



 =  and let  )(ˆ ISEq 

 =  to be the 

mean number of selected variables. We define N as the 

set of noise covariates, i.e.  0: 0 == jjN  . Also, we 

define V as the number of falsely selected variables with 

stability selection, 

stableSNV ˆ=                                                        (33) 

We are then in a position to give a bound-on E [V], also 

called the per-family error rate. 
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Theorem:  Assume that the expectation of the random 

indicator variables  Sk ˆ1 is equal for all Nk . Also 

assume that the procedure with respect to the whole 

regularization region is not worse than random guessing, 

i.e. 

 
  N

S

SNE

SSE










ˆ

ˆ

                                               (34) 

Then E [V] is bounded by 

 
p

q
VE

thr

2

12

1 

−



                                                (35) 

The bound depends on the size of the regularization 

region via  )(ˆ ISEq 

 = which can be approximated 

via  ZISEq )(ˆˆ 

 = .  

Again, this quantity can be approximated arbitrarily well 

by sub sampling. For a given regularization region , one 

can choose an adequate threshold thr such that E[V ] is 

bounded as desired. Alternatively, one can fix the 

threshold and choose the regularization region 

q adequately. In classical regularization, the optimal 

amount of regularization depends on the noise level, 

which is hard to estimate, and the solution is quite 

sensitive to the choice of the regularization parameter. 

Stability selection, on the other hand, seems to be much 

less sensitive to the choice of the regularization region. At 

the same time, it offers a way to achieve exact error 

control without any estimate of the noise level. Note that 

in Meinshausen and Buhlmann (2010), the assumption of 

equal selection probability is replaced by the stronger 

assumption of exchangeability which demands that the 

joint probability distribution of the random variables  

 Sk ˆ1   ,. Nr permutations in is invariant unde Nk  

We used the weaker assumption to highlight that our 

modifications of stability selection need somewhat 

stronger assumptions albeit weaker than exchangeability.  

The condition in itself is quite strong and, presumably, 

often not fulfilled for real data. However, it seems that an 

assumption of this kind has to be made to guarantee error 

control in this generality. Intuitively, the proof relies on 

the assumption that there is competition among noise 

variables for selection. This lowers the chance of any 

specific noise variable to be stably selected. 

Via above theorem, we are not only able to control the 

per-family error rate E [V ] but also the so-called family-

wise error rate P[V > 0] (Dudoit, Shaffer, and Boldrick 

(2003)). This holds because of the markov-type 

inequality, 

   VEkVkP                                                      (36) 

Using k = 1 leads to the desired bound for  0VP It 

seems natural to look at  maxmin ,= , where 

max corresponds to the beginning of the regularization 

path where no variable is included and min is chosen 

such that q  has adequate size. To guarantee low error 

rate via inequality (35),   is typically chosen such that 

q  is of order p . If np  , then  might be a 

substantial part of the total regularization path. If 

however np  , one has to restrict   to the beginning 

of the stability path. As an example, assume we set 

min such that pq = and we choose 75.0=thr . 

Then the right side of inequality (35) is two. Assume that 

n = 100. If p = 4900, then we want to choose   such 

that   70)(ˆ = ISE . At the end of the regularization 

path we know that 50 variables are included 

since 502/ =n . If   is set to cover the whole 

regularization path, )(ˆ IS 
will be somewhat larger than 

50 because it also contains all variables that were present 

at some point in the regularization path but are missing at 

its end. Still, we might be able to chose   as the whole 

regularization path and still achieve error control. If, 

however, p = 100, we would need to restrict our attention 

to a region   where about 10 variables have been 

selected. In general, one should not choose q  too small 

because even variables that show high overall stability 

might not have fully stabilized yet. An example of this 

behavior can be seen in Figure. 3. 

Obviously, one can choose   to contain only one 

value . This is called point wise control. To avoid the 

need to estimate q , one can use a base procedure that 

just selects a given number of variables. Say, one wants to 

fix q  at 20 to achieve a certain amount of error control. 

Then one would define the base method to select the first 

20 variables that enter in the stability path. With this base 

method, one then proceeds as before. 

3.2. Consistent Variable Selection 

We have seen that for the lasso it is impossible to have 

consistent variable selection in the sense that 

  )(1)(ˆ →→= nSSP  if the design does not 

satisfy the irrepresentable condition. Meinshausen and 

Buhlmann (2010) introduced the randomized lasso which 

makes use of additional randomness. They showed that 

for this modification, consistent variable selection is 

possible for cases where the irrepresentable condition is 

not satisfied. The randomized lasso works via randomly 

perturbing the weighting for each variable. Specifically, 

let ]1,0(  and ),...,1(, pkWk = be i.i.d. random 
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variables taking either   or 1 as values where the two 

states have probability wp and )1( wp− respectively. 

The randomized lasso estimator is then defined as 


=

+−=
p

k k

k

R

W

W
nXY

1

2

2

, /minargˆ






 (37) 

This estimator is calculated repeatedly for different 

realizations of ),...,1(, pkWk = and one looks for 

consensus in the collection of solutions. Consistency for 

this procedure was shown, granted that and wp  are 

chosen sensibly. Combined with sub sampling of the data, 

the consistency result still holds. 

 

Fig. 4. Example stability paths for the toy model 

described in the main text using standard lasso on the 

right and randomized lasso on the left.  

Solid blue lines correspond to active covariates, dashed 

black lines to inactive covariates. 100 subsamples were 

drawn. 

To illustrate this, we reproduce a toy example presented 

in Meinshausen and Buhlmann (2010). The predictor 

variables were drawn from ),0( N where   was the 

identity up to entries 1323 , and their symmetric 

counterparts which were set to 0.6. Only the first two 

covariates were active having coefficient values one. The 

signal-to-noise ratio was set to 2. In this setting, the 

irrepresentable condition is violated for the third 

covariate. Figure 4 shows the results for regular stability 

selection and the randomized lasso procedure. One clearly 

sees that the randomized lasso is protected against picking 

the inactive third variable. 

3.3. Modifications of Stability Selection 

In Figure 4, we see that the strong bias for selection of the 

variable which violates the irrepresentable condition is 

weaker when the amount of regularization is smaller. The 

truly active variables on the other hand are still stably 

selected. If this were a general phenomenon then a test 

statistic favoring variables showing high stability over the 

whole regularization path might have better properties in 

this scenario. We will in the following introduce two test 

statistics that try to exploit this behavior and formulate 

their corresponding error bounds in spirit of 3.0.6.1. 

3.3.1 Integral-Modification of Stability Selection 

As an alternative to the test statistic from Meinshausen 

and Buhlmann (2010), this is 

 thrk

stable kS 


=



ˆmax:ˆ                                (38) 

we can replace the maximum by a scaled integral 

( )  = thrk

stable dkS ˆ:ˆ
int                           (39) 

where  

( ) =1d                                                                 (40) 

This will select variables that show high stability on the 

whole regularization region. Under similar assumptions as 

above, an analogous kind of error control can be 

achieved. Again, we introduce some appropriate notation. 

Set 

( )
( )  )(ˆ1  dI

k
W

ISk=  
                                   (41) 

stableSNV intint
ˆ=                                                     (42) 

and for some b 

( ) 







= 





Tk

bIW

b

k
Eq 1                                               (43) 

where T refers to the set of all covariates, i.e. 

TNS = . 

Theorem: Assume for any c, it holds that 

( )  
( )   N

S

E

E

cWNk

cWSk

k

k 







1

1

1

1
                                        (44) 

Additionally, assume that )(IWk has the same 

distribution function for all Nk . Then the expected 

number of falsely selected variables is bounded in the 

following way 

 
( )

( ) ,
12

1 2

int

b

thr

q
pb

b
VE 

−−

−



                          (45) 

where b needs to be chosen such that bthr −12 . 

Admittedly, this error bound yields a method that tends to 

have less power than the original method because it is too 
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conservative. However, we know that, roughly speaking, 

it works via showing that another test statistic, namely 

( ) ZbIWP k                                                          (46) 

has a lower bound depending on Z 

( )  dk
ˆ                                                               (47) 

Then the error bound is proven for (46). As an alternative 

strategy, we could directly use this statistic. We will do 

this in the following. 

3.3.2 Regularization-Stable Modification of Stability 

Selection 

We define the statistic 

( ) ZbIWPT kbk =,                                              (48) 

Now we may define our stable set as 

 thrbk

stable

reg TkS = ,:ˆ                                            (49) 

If we define 

stable

regreg SNV ˆ=                                                    (50) 

we can prove the following error bound theorem. 

Theorem: Assume for any c, it holds that 

( )  
( )   N

S

E

E

cWNk

cWSk

k

k 







1

1

1

1
                                        (51) 

Additionally, assume that )(IWk has the same 

distribution function for all Nk . Then 

the expected number of falsely selected variables is 

bounded in the following way 

 
( )

( )2
12

1 b

thr

reg q
p

V 
−




                                   (52) 

Intuitively, the regularization-stable procedure will only 

include a variable k into the stable set 
stable

regŜ  if, for most 

subsamples, it is present in a large portion of the 

regularization path for the considered regularization 

region. In the simulations presented below, not a 

weighting over was used but rather an uniform 

weighting over the l 1-norm of the solution vector from 

zero to the size of the full OLS-solution. One just has to 

regard the function that maps the data to the set 

 bWk k : as the base selection method. For this 

method, we then use point wise stability selection. Note 

that this variant will yield the same results as standard 

stability selection if the selected set can only increase 

along the regularization path. However, this is not the 

case when using the lasso as base procedure. 

4. Numerical Results 

In this section, we explore the properties of the different 

variants of stability selection via simulation experiments. 

Two main questions need answering. Firstly, since the 

error bounds are proven under restrictive conditions 

which cannot be tested in practice, it is of interest to see if 

the error bound holds up for the various methods. 

Secondly, we want to compare the power of the various 

methods. However, since we are mainly interested in 

preventing false positives, we will look at a different 

power measure than the standard ROC-curves. Instead, 

we will ask how likely it is to uncover some fraction of 

the model without committing an error. We will focus on 

the comparison between standard stability selection and 

regularization-stable stability selection and neglect 

integral stability selection because it cannot compete with 

regularization-stable stability selection. For regularization 

stable stability selection, we will use the whole 

regularization path as   in 
bq  and use changes in b to 

achieve the desired error control. All calculations were 

performed in R. Lasso traces were calculated by the 

LARS algorithm (Efron et al. (2004)) implemented in the 

lars-package. 

 

4.1. Data Sets 

To test our method on realistic data, two real data sets 

were used. However, since we need to know the true 

underlying model to evaluate the quality of our different 

approaches, we discard the response variable and replace 

it by simulated values for some known linear model. 

Models were constructed by choosing sets of covariates of 

predefined size s at random. For these, the corresponding 

 -values were drawn from a uniform distribution on the 

]1,1[− -interval. A normal error ),0(~ 2 N was 

added where the standard deviation was chosen such that 

the signal-to-noise ratio reached a certain predefined 

value S/N, i.e. 

( )



var
/

2

2

n
NS


=                                                       (53) 

Data sets derived from real experiments were also 

presented in Buhlmann and van de Geer (2011). 

4.2. Gene-Expression Data 

This data set from DSM Nutritional Products 

(Switzerland) stems from a gene expression experiment. 

The goal was to relate gene expression to the production 

rate of riboflavin in B. Subtilis. To this end, samples from 

various fermentation processes were taken and the 
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expression levels of 4088 genes were measured via 

microarray technology. At the same time, production rate 

of riboavine was measured. This data set can be written as 

a 1114088 design matrix 
1114088RX and a 

response variable
111RY  . 

4.3. Motif Regression Data 

This data set stems from a CHIP-chip study. The goal was 

to identify short DNA segments, called motifs, to which 

the transcription factor HIF1  binds. To this end, 

binding strengths of HIF1  to relatively long stretches 

of DNA was determined. Then, the abundance of motifs 

within the longer segments was determined via a 

computational biology algorithm (Liu, Brutlag, and Liu 

(2002)). This data set can be written as a 

2587660 Design matrix 
2587660RX and a 

response variable
2587RY  . However, to speed up 

calculations, only the first two thirds of all the covariates 

and observations were used. 

4.4. Simulated Designs 

Additionally, we generated designs by simulation. Sample 

size n was fixed at 200 for all simulation runs. 

a) Factor model with 10 factors: The design X satisfies 

the following conditions 

   =

 11010

. fX
npn

                                                         (54) 

where each entry in  , f and   is derived from N (0, 1). 

b) Block-wise structure: Each observation is drawn 

from ),0( pN , where   has block diagonal structure. 

Each block has size 2020 and contains only entry 

values 0.9 except on the diagonal, where it contains ones. 

4.5. Checking Error Bound 

We performed stability selection for simulated data, 

where the design was either derived from the real data 

sets described above, or alternatively, also simulated. 

Denote the estimated upper bound for E [V] with Ebound, 

i.e. 

( )
p

q

thr

bound

2
ˆˆ

12

1 

−
=


                                         (55) 

(or analogously defined with 
bq
ˆ  for the regularization-

stable variant of stability selection). Figures 4.1 and 4.2 

shows the estimated values of E [V] versus Ebound for 

various values of thr , where model size s and signal-to-

noise ratio were fixed. To achieve the desired values for 

Ebound, either min in the case of standard stability 

selection or b in the case of regularization-stable stability 

selection were adjusted. Figure 5 shows the results for the 

riboflavin data set and the motif regression data set. We 

see that error control is usually conservative, for high 

values of Ebound. For the riboflavin data set, we see that, 

for the standard method, the false positive rate seems to 

be quite insensitive to changes in the demanded error 

control for fixed thresholds thr . This corresponds to an 

insensitivity of the method to changes in the 

regularization region   for this data set. In the case of 

very strict error control and low threshold values, this 

behavior seems to lead to problems in one setting for the 

riboflavin data set. 

 

Fig. 5. E [V] versus Ebound for the truncated motif 

regression data set and the riboflavin data sets (top row 

and bottom row respectively).  

The two methods employed were standard and 

regularization-stable stability selection (first and second 

column respectively). Simulation settings where S=N = 2 

and s = 20 for motif regression data and s = 16 for 

riboflavin data. 100 simulation runs were performed. The 

displayed standard deviations were estimated via the 

bootstrap. 

4.2 show the same for simulated designs of type a) and b). 

For design b), both methods work fine whereas design a) 

leads to violation of the estimated error bound for 

standard stability selection. Regularization-stable stability 

selection seems better able to control the error rate in this 

setting. Another way to check if the error bound holds up 

is to fix thr and Ebound and adapt 


q  or 
bq
ˆ  

adequately. We ran simulations for various models. 

Figure 7 and 8 show the results of such a simulation 

experiment for the riboflavin data set and the truncated 

motif regression data set respectively. For the riboflavin 

data set, we again see a conservative error control in most 

cases. However, for very low values of thr and Ebound, 

we see that the error bound is not respected in all settings 

for standard stability selection. Regularization stable 

stability selection seems more sensitive to values of 

Ebound but seems to stay always well within the bound 

set by Ebound. This respect of the error bound is paid 

with loss of power in settings, where tight error control is 

demanded. In the truncated motif regression data set, the 
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situation is reversed. Here, the regularization-stable 

version of stability selection shows less sensitivity to the 

choice of Ebound. However, error control is much more 

conservative overall, and nowhere is the bound violated. 

 

Fig. 6. Analogous plot as figure 5 for the for simulated 

designs of type a) and b) (top row and bottom row 

respectively).  

Simulation settings where S=N = 2, p = 1000 and s = 14 

for design a) and s = 8 for design b). 

 

Fig. 7. Average proportion of relevant variables selected 

versus average of false positives.  

The design was taken from the riboflavin data set. For 

each displayed point, an average was taken over 30 runs. 

thr  was set to (0.7, 0.6) for the upper and lower row 

respectively. Ebound was set to (0.5, 2.5) from left to 

right. Triangles denote results for standard stability 

selection and crosses for regularization-stable stability 

selection. Simulation settings were all combinations of s = 

(2, 4, 6, 8, 10) and S/N = (4, 3, 2, 1). 

4.6. Power Comparison 

To compare the power between various approaches, we 

performed standard stability selection, stability selection 

employing randomized lasso and regularization-stable 

stability Selection. 

 

Fig. 8. Average proportion of relevant variables selected 

versus average of false positives.  

The design was taken from the truncated motif regression 

data sets. For each displayed point, an average was taken 

over 30 runs. The settings for Ebound and thr were the 

same as in Figure 7. Simulation settings were all 

combinations of    s = (3, 4, 5, 10, 20) and S/N = (4, 3, 2, 

1). 

We chose   such that pq 8.0= . Analogously, for 

regularization-stable stability selection, b was chosen 

such that pqb 8.0= . This setting is also used in the 

numerical simulations of Meinshausen and Buhlmann 

(2010). For randomized lasso, both weakness   and wp  

were set to 0.5. 

Figure 4.5 shows the estimated probability to select 10% 

of the relevant variables without selecting any false 

positives. For comparison to standard lasso, we checked if 

at any position in the regularization path 10% of relevant 

variables were chosen without including any false 

positives. 

Standard stability selection and regularization-stable 

stability selection give comparable results for the real data 

sets. For simulation setting a), regularization-stable 

stability selection outperforms all other methods 

substantially. Standard lasso is weaker in almost all 

settings than either standard stability selection or 

regularization-stable stability selection. Randomized lasso 

performs better than standard stability selection in setting 

a) but is still outperformed by regularization-stable 

stability selection. Figure 4.6 shows, for the same data, 

the estimated probability to select 40% of relevant 

variables without including any false positives. To 

illustrate how the advantage in setting a) of the 

regularization-stable variant over the standard approach 

and even the randomized lasso approach comes about, 

Figure 11 displays sample stability paths for regular lasso 

and randomized lasso respectively. One sees that the 

demand for strict error control leads to a suboptimal 
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regularization region. For standard stability selection, two 

inactive variables show high stability initially, but this 

stability disappears further down the regularization path. 

Therefore, regularization-stable stability selection will not 

select them. Except for the setting a), results for the 

standard and the regularization-stable method look very 

similar. The only other setting where regularization-stable 

stability selection seems beneficial is in setting b) when 

noise is low, and the numbers of truly active variables is 

high. To explore this parameter setting, we generated 

truncated versions of the riboflavin data set.  

 

Fig. 9. Probability of selecting 0.1s active variables without selection any noise variables, where pqq b 8.0ˆ == 



 

'Standard' refers to the procedure proposed by Meinshausen et al, without random weights and 'Random lasso' to the 

procedure with random weights. 'Reg-stable' refers to the regularization-stable version and 'Lasso' to the lasso trace 

procedure described in the main text. 100 simulation runs were performed. 

 

Fig. 10. Probability of selecting 0.4s active variables without selection any noise variables, where pqq b 8.0ˆ == 



. 

100 simulation runs were performed. 
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In particular, we took the newp columns of the original 

design leading to a data matrix of size 111newp . The 

resulting designs still tend to contain some high 

correlations, which is shown in Figure 12. This is the case 

because the genes were ordered alphabetically, and genes 

of the same gene family often have the same names up to 

numerals and also tend to be co expressed. 

Figure 11 explores the setting where newpp = is quite 

small and ps  . Again, we choose   such 

that pqq b 8.0ˆ == 



. Regularization stable stability 

selection seems advantageous in low to medium noise 

settings when the model is quite complex such 

that sq 


. A similar scenario is depicted in Figure 14. 

Again, ps  but p is chosen larger. 

 

Fig. 11. Sample stability paths for regular lasso (left 

panel) and randomized lasso (right panel). Simulation 

setting b) was used. Model parameters were s=10, n=100, 

p=100, S/N=4. Also, the regularization region for 

pq 8.0=


is marked. 

 

Fig. 12. Histogram of distances for the riboflavin data. 

Only genes having a maximal absolute correlation to 

some other gene of 0.8 or higher were considered. For 

each gene, the distance (in number of columns) to the 

gene which had the highest absolute correlation with it 

was measured. 

Additionally, to the previous plots, we added results of 

stability selection where only the very end of the 

regularization path is used. Due to the complexity of the 

model compared to the numbers of observations, we only 

demanded that one truly active variable be recovered 

without including any inactive variables. In the low noise 

settings, we see an advantage of regularization stable 

stability selection over standard stability selection, 

particularly where sq 


or even sq 


but also a 

slight advantage for sq 


. For higher noise settings, 

the advantage gradually disappears. This seems to happen 

more quickly for small values of s. End-of-path stability 

selection performs very well in low noise settings but 

clearly loses its advantage for higher noise settings. 

Figure 15 shows similar results for even larger models. 

Here, the overall chance of recovery of any active 

variable without including an inactive one is quite small. 

Nevertheless, regularization stable stability selection 

seems to have beneficial effects. Also note that the 

advantage of stability selection over regular lasso remains 

intact even though n is not much larger than s. To check if 

the regularization-stable stability selection improves even 

for high noise settings if 


q  is substantially smaller than 

s, we replotted results shown in Figure 13 and 14 for 

pqq b 1.0ˆ == 



instead of p8.0 . Now, 

regularization-stable stability selection seems 

advantageous even for high noise settings. The advantage 

of standard stability selection over regular lasso seems to 

have completely vanished for p = 100. 

From these simulations, it seems that the regularization-

stable method has greater power if sq 


. However, 

when we actually want to use our error control approach, 

it is also necessary, that variables show higher stability 

than our cut-o_ _thr. We explore this in Figure 18. We 

chose 6.0=thr and Ebound = 0.5 so 

that pqq b 1.0ˆ == 



. We see that the error rate for 

regularization-stable stability selection is smaller while 

the corresponding number of true positives is similar. 

Also, error control in terms of bound 3.0.6.3 is not well 

achieved in standard stability selection. 

4.7. Discussion of the Simulation Results  

Meinshausen and Buhlmann (2010) prove that 

randomized lasso consistently selects truly active 

variables even in cases when regular lasso fails because 

the irrepresentable condition does not hold. As an 

empirical validation of this finding, they show marked 

improvement in simulations using the 10-factor model. 

However, randomized lasso has the drawback that 

additional parameters need to be set in the procedure. 

Also, the additional perturbation tends to decrease 

stability values for variables showing high stability. When 

using error bound 3.0.6.3, one needs high selection 

probabilities for truly active variables, so randomized 
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lasso selects fewer active variables. It is therefore 

interesting to note that regularization-stable stability 

selection also leads to a marked improvement for the 10-

factor model. 

 

 
 

Fig. 13. Probability of selection 0:1s (top row) and 0:4s (bottom row) of active variables without selection any noise 

variables, where pqq b 8.0ˆ == 



. 100 simulation runs were performed. 

 

 

Fig. 14.  Probability of selecting one active variable without selection of any noise variables. Additional to the power 

plots above, we also included results of stability selection via regular lasso, where only the final fit in the lasso trace was 

used. Again, pqq b 8.0ˆ == 



 and 100 simulation runs were performed. 
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Fig. 15. Probability of selecting one active variable without selection of any noise variables. 

 Additional to the power plots above, we also included 

results of stability selection of regular lasso where only 

the final fit in the lasso trace was used. 

pqq b 8.0ˆ == 



 and 100 simulation runs were 

performed. 

When using the error-bound 3.0.6.3, the choice of the size 

of the regularization region is made independently of the 

noise in the data and the model size. In general, results 

achieved with standard stability selection depend little on 

the size of the regularization region. However, it seems 

intuitive that variable selection cannot be done optimally 

when the regularization region is chosen such that model 

size of the true underlying model is bigger than 


q  

given that enough data is available to get a 'decent' 

estimate. Simulations seem to imply that regularization-

stable stability selection can be beneficial in this setting. 

One reason could be that information from further down 

the regularization path is included where model size is 

more adequate for the problem. If one wants to control the 

 

Fig. 16. Probability of selecting 0:1s (top row) and 0:4s (bottom row) of active variables without selection of any noise 

variables. pqq b 1.0ˆ == 



. 100 simulation runs were performed.
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Fig. 17. Probability of selecting one active variable without selection of any noise variables. pqq b 1.0ˆ == 



. 100 

simulation runs were performed. 

Family wise error rate, that is P [V > 0], a setting was 

sq 


might be quite common. For example, note that 

in Figure 18 the aim would be to control the family-wise 

error rate at 0:5. It is also noteworthy that standard 

stability selection exhibits problems to control error rates 

at very low values in the example of the riboflavin data 

set making it infeasible for controlling of the family-wise 

error rate in this example. 

 

Fig. 18. Average proportion of relevant variables selected 

versus average of false positives. The design was taken 

from the riboflavin data set, but only the p first variables 

were looked at where p was set to 100 for the left and 

1000 for the right panel. The settings for Ebound and 

thr r was 0.5 and 0.6 respectively. Simulation settings 

corresponded to the ones used in Figure 13, and 14 

respectively. 

5. Discussion 

In this paper, some variants of stability selection, 

proposed by Meinshausen and Buhlmann (2010) were 

devised. Stability selection combines selection algorithms 

for high dimensional problems with sub sampling. It 

provides a principle of error control which guides the 

amount of regularization. In most cases, the solutions do 

not depend strongly on the initial regularization. Of the 

devised methods, one, dubbed the regularization stable 

version, provided in many cases similar results as the 

original method. However, it seemed superior in some 

settings. One was the setting of the 10-factor model, 

which is a very hard problem for the basic lasso. 

Improvements for this setting seemed comparable to the 

randomized lasso. However, the method does not rely on 

additional randomization to achieve this gain. Since this 

additional randomization seems to decrease the highest 

stabilities achieved, this can be seen as an advantage. 

Additionally, it seemed that the method outperformed the 

standard procedure if true model size s was larger than the 

number of covariates that the base procedure would select 

on the regularization region, (i.e. sq  ) and the noise 

was not too large. This is more likely to occur when p  

is small compared to s and when tight error control is 

demanded, for example when one tries to control the 

family-wise error rate. One practical situation where this 

could be relevant are rescreening, where a prior screen 

has produced a candidate list and a second screen is 

performed on this shorter list. One would hope that s is 

still as large as in the original screen, but p is much 

smaller. Perhaps even noise would be somewhat reduced 

because smaller screens are easier to handle. Also, the 

ratio of s to n is cheaper to decrease. Furthermore, it is 

plausible that for this second screen, tight error control is 

desirable, since the next step in the pipeline might be 

validation through time consuming alternative methods. 

The seen advantage in the above settings might stem from 

the fact, that it allows incorporation of information from 

further down the regularization path, without inflating the 

number of selected variables for the base method grossly. 
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One can think of other procedures that also have this 

property. for example, one could use some truncated 

version of the lasso, which would have a much sparser 

solution than the original lasso procedure for the same 

amount of regularization taking place. 
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